TILDAS Dual Laser Clumped Isotope Analyzer for CH₄ Gas Samples

Direct Non-Destructive Spectroscopic Measurement of ¹³CH₃D with No Isobaric Interference

Features

- Direct measurement of $\delta^{13}CH_4,\,\delta^{12}CH_3D,$ and $\delta^{13}CH_3D$
- Precision for $\delta^{13}\text{CH}_3\text{D}$ better than 0.2 ‰ (1\sigma) in 60 minutes with 5 ml STP sample
- Low operating costs
- Suitable for pure CH₄ samples of any source

TILDAS TECHNOLOGY

Aerodyne instruments use **tunable infrared laser direct absorption spectroscopy (TILDAS)** at mid-IR wavelengths to probe molecules at their strongest "fingerprint" transition frequencies. We further enhance sensitivity by employing a patented multipass broad-band absorption cell that provides optical path lengths up to 400 meters. Direct absorption spectroscopy allows for fast (<1 sec) absolute trace gas concentrations without need for elaborate calibration procedures. Moreover, TILDAS instruments are relatively free of measurement interference from other molecular species, enabling extremely specific detection.

Rugged, field-ready instruments

Direct absorption spectroscopy allows for highly specific and accurate gas detection

Mid-IR detection enables maximum measurement sensitivity

Applications

- Clumped methane thermometry.
- Methane source attribution.
- Non-equilibrium clumped isotope signatures in microbial methane.

Advantages

- Measurement precision comparable to much larger and more expensive IRMS instruments.
- Powerful TDLWintel software provides flexible instrument control and real-time data analysis.
- Valve control capable of complex scheduling and automatic background and calibrations.
- Optional automated sample handling systems.
- Turn-key design allows unattended operation.

Specifications

Discrete Sample Specifications for CH₄ Clumped Isotope Monitor

	CH ₄	δ ¹³ CH ₃ D
One sample: 22 µ-moles CH ₄ 6 min measurement cycle	Pure 0.53 ml STP	0.6 ‰
10 Samples: 220 μ-moles CH ₄ 60 min measurement cycle	Pure 5.3 ml STP	0.2 ‰

Note: These measurements are normalized to a working reference and the time to do so is included in the quoted measurement time. The working reference has a mixing ratio, pressure and matrix composition similar to the sample.

Related Instruments

- Dual laser isotope monitor for δ^{13} CH₄ and δ^{12} CH₃D of CH₄
- Dual laser isotope monitor for δ^{13} CH₄ and δ^{12} CH₃D, δ^{13} CH₃D, δ^{12} CH₂D₂ of CH₄

Data Outputs

RS-232, USB drive, ethernet

Size, Weight, Power

Dimensions: 560 mm x 770 mm x 640 mm (W x D x H) Weight: 75 kg Electrical Power: 250-500 W, 120/240 V, 50/60 Hz (without pump)

Infrared Spectroscopy for Clumped Isotope Determination

Installation

Benchtop system Instrument Operations Operating Temperature: -20 to +40 °C

Instrument Components

Core instrument Thermoelectric chiller Keyboard, mouse, and monitor Vacuum pump (customer specified) Inlet sampling system (customizable)

Aerodyne specializes in collaboration and custom design. Please contact us if you would like to discuss additional measurement options and applications.

REFERENCES

Ono, S., Wang, D. T., Gruen, D. S., Sherwood Lollar, B., Zahniser, M. S., McManus, B. J., Nelson, D. D., Measurement of a Doubly Substituted Methane Isotopologue, 13CH3D, by Tunable Infrared Laser Direct Absorption Spectroscopy. Analytical Chemistry, 86(13), pp. 6487-6494, 2014.

Gonzalez, Y., Nelson, D. D., Shorter, J. H., McManus, J. B., Dyroff, C., Formolo, M., Wang, D. T., Western, C. M., Ono, S., Precise Measurements of 12CH2D2 by Tunable Infrared Laser Direct Absorption Spectroscopy. Analytical Chemistry, 91(23), pp. 14967-14974, 2019.

45 Manning Road Billerica, MA 01821 (978) 663–9500 www.aerodyne.com