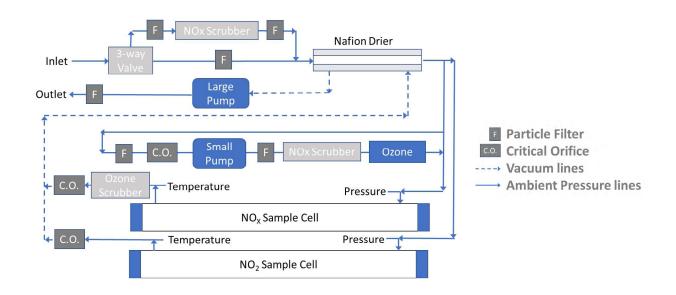


CAPS NO_X - NO₂ Monitor

Accurate and Precise Monitoring of Nitrogen Oxides (NO_X) and NO₂

- Simultaneous Measurement
- High Time Resolution



Attributes

- Visible (405/450 nm) absorption measurement using patented Cavity Attenuated Phase Shift (CAPS) technology
- Simultaneous dual channel NO₂ and NO_X (NO by subtraction)
- Ozone conversion of NO to NO₂
- High linearity (better than 1%)
- Ideal for mobile monitoring Response Time 1-2 s

Advantages

- Direct measurement of NO₂
- Essentially interference-free
- Automated and autonomous operation:
 - No zero air
 - Automated background subtraction
- Minimal maintenance (periodic change of filter and scrubber)
- No toxic gas emissions
- Customization available

CAPS NO_X - NO₂ Monitor

Specifications

MEASUREMENT SPECIFICATIONS	NO ₂	NO _X	NO
Range (ppbv)	0-1,000	0-1,000	0-1,000
Resolution (ppbv)	0.01	0.01	0.01
Precision (2σ, 1 s) (ppbv)	< 0.5	< 0.5	<1
Time Response (10-90%)	1-2 s	1-2 s	1-2 s
Baseline Drift	Baselines Taken as Often as Required		
Span Drift	Negligible		
Linearity	< ± 5 ppbv at 1000 ppbv		
Flow Rate (lpm)	1.25	1.25	

1 Year Manufacturer's Warranty

Physical Specifications

Cell Pressure: ambient

Cell Temperature: ~5 °C above ambient

Power Usage: <100 W Weight: <20 kg

Size: \sim 65 cm x 43 cm x 23 cm (L x W x H)

[19" rack mount, 5U, 24" deep]

Data Output

Display Front Panel, 1 second time constant (\pm 1 digit)

RS-232 Rear Panel, DB-9 Female Connector (Null Modem cable provided)
USB Rear Panel, Female B Connector (Male A to Male B cable provided)

Ethernet Rear Panel, RJ-45 port

On-Board Storage Capacity > 10 years continuous operation

REFERENCES

A Practical Alternative to Chemiluminescence Detection of Nitrogen Dioxide: Cavity Attenuated Phase Shift Spectroscopy, P.L. Kebabian, E.C. Wood, S.C. Herndon, and A. Freedman, Environ. Sci. Technol., 42:6040-6045 (2008)

Detection of Nitrogen Dioxide by Cavity Attenuated Phase Shift Spectroscopy, Paul L. Kebabian, Scott C. Herndon and Andrew Freedman, Anal. Chem., 77:724-728 (2005)

System and Method for Precision Phase Shift Measurement, P.L. Kebabian, U.S. Patent 8364430 (issued Jan. 29, 2013); also patented in Germany, France, the United Kingdom and China

System and Method for Trace Species Detection Using Cavity Attenuated Phase Shift Spectroscopy with an Incoherent Light Source, P.L. Kebabian and A. Freedman, U.S. Patent No. 7301639 (issued November 27, 2007)

